numpy/untyped_array.rs
1//! Safe, untyped interface for NumPy's [N-dimensional arrays][ndarray]
2//!
3//! [ndarray]: https://numpy.org/doc/stable/reference/arrays.ndarray.html
4use std::slice;
5
6use pyo3::{ffi, pyobject_native_type_named, Bound, PyAny, PyTypeInfo, Python};
7
8use crate::array::{PyArray, PyArrayMethods};
9use crate::cold;
10use crate::dtype::PyArrayDescr;
11use crate::npyffi;
12
13/// A safe, untyped wrapper for NumPy's [`ndarray`] class.
14///
15/// Unlike [`PyArray<T,D>`][crate::PyArray], this type does not constrain either element type `T` nor the dimensionality `D`.
16/// This can be useful to inspect function arguments, but it prevents operating on the elements without further downcasts.
17///
18/// When both element type `T` and index type `D` are known, these values can be downcast to `PyArray<T, D>`. In addition,
19/// `PyArray<T, D>` can be dereferenced to a `PyUntypedArray` and can therefore automatically access its methods.
20///
21/// # Example
22///
23/// Taking `PyUntypedArray` can be helpful to implement polymorphic entry points:
24///
25/// ```
26/// # use pyo3::prelude::*;
27/// use pyo3::exceptions::PyTypeError;
28/// use numpy::{Element, PyUntypedArray, PyArray1, dtype};
29/// use numpy::{PyUntypedArrayMethods, PyArrayMethods, PyArrayDescrMethods};
30///
31/// #[pyfunction]
32/// fn entry_point(py: Python<'_>, array: &Bound<'_, PyUntypedArray>) -> PyResult<()> {
33/// fn implementation<T: Element>(array: &Bound<'_, PyArray1<T>>) -> PyResult<()> {
34/// /* .. */
35///
36/// Ok(())
37/// }
38///
39/// let element_type = array.dtype();
40///
41/// if element_type.is_equiv_to(&dtype::<f32>(py)) {
42/// let array = array.cast::<PyArray1<f32>>()?;
43///
44/// implementation(array)
45/// } else if element_type.is_equiv_to(&dtype::<f64>(py)) {
46/// let array = array.cast::<PyArray1<f64>>()?;
47///
48/// implementation(array)
49/// } else {
50/// Err(PyTypeError::new_err(format!("Unsupported element type: {}", element_type)))
51/// }
52/// }
53/// #
54/// # Python::attach(|py| {
55/// # let array = PyArray1::<f64>::zeros(py, 42, false);
56/// # entry_point(py, array.as_untyped())
57/// # }).unwrap();
58/// ```
59#[repr(transparent)]
60pub struct PyUntypedArray(PyAny);
61
62unsafe impl PyTypeInfo for PyUntypedArray {
63 const NAME: &'static str = "PyUntypedArray";
64 const MODULE: Option<&'static str> = Some("numpy");
65
66 fn type_object_raw<'py>(py: Python<'py>) -> *mut ffi::PyTypeObject {
67 unsafe { npyffi::PY_ARRAY_API.get_type_object(py, npyffi::NpyTypes::PyArray_Type) }
68 }
69
70 fn is_type_of(ob: &Bound<'_, PyAny>) -> bool {
71 unsafe { npyffi::PyArray_Check(ob.py(), ob.as_ptr()) != 0 }
72 }
73}
74
75pyobject_native_type_named!(PyUntypedArray);
76
77/// Implementation of functionality for [`PyUntypedArray`].
78#[doc(alias = "PyUntypedArray")]
79pub trait PyUntypedArrayMethods<'py>: Sealed {
80 /// Returns a raw pointer to the underlying [`PyArrayObject`][npyffi::PyArrayObject].
81 fn as_array_ptr(&self) -> *mut npyffi::PyArrayObject;
82
83 /// Returns the `dtype` of the array.
84 ///
85 /// See also [`ndarray.dtype`][ndarray-dtype] and [`PyArray_DTYPE`][PyArray_DTYPE].
86 ///
87 /// # Example
88 ///
89 /// ```
90 /// use numpy::prelude::*;
91 /// use numpy::{dtype, PyArray};
92 /// use pyo3::Python;
93 ///
94 /// Python::attach(|py| {
95 /// let array = PyArray::from_vec(py, vec![1_i32, 2, 3]);
96 ///
97 /// assert!(array.dtype().is_equiv_to(&dtype::<i32>(py)));
98 /// });
99 /// ```
100 ///
101 /// [ndarray-dtype]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dtype.html
102 /// [PyArray_DTYPE]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_DTYPE
103 fn dtype(&self) -> Bound<'py, PyArrayDescr>;
104
105 /// Returns `true` if the internal data of the array is aligned for the dtype.
106 ///
107 /// Note that NumPy considers zero-length data to be aligned regardless of the base pointer,
108 /// which is a weaker condition than Rust's slice guarantees. [PyArrayMethods::as_slice] will
109 /// safely handle the case of a misaligned zero-length array.
110 ///
111 /// # Example
112 ///
113 /// ```
114 /// use numpy::{PyArray1, PyUntypedArrayMethods};
115 /// use pyo3::{types::{IntoPyDict, PyAnyMethods}, Python, ffi::c_str};
116 ///
117 /// # fn main() -> pyo3::PyResult<()> {
118 /// Python::attach(|py| {
119 /// let array = PyArray1::<u16>::zeros(py, 8, false);
120 /// assert!(array.is_aligned());
121 ///
122 /// let view = py
123 /// .eval(
124 /// c_str!("array.view('u1')[1:-1].view('u2')"),
125 /// None,
126 /// Some(&[("array", array)].into_py_dict(py)?),
127 /// )?
128 /// .cast_into::<PyArray1<u16>>()?;
129 /// assert!(!view.is_aligned());
130 /// # Ok(())
131 /// })
132 /// # }
133 /// ```
134 fn is_aligned(&self) -> bool {
135 unsafe { check_flags(&*self.as_array_ptr(), npyffi::NPY_ARRAY_ALIGNED) }
136 }
137
138 /// Returns `true` if the internal data of the array is contiguous,
139 /// indepedently of whether C-style/row-major or Fortran-style/column-major.
140 ///
141 /// # Example
142 ///
143 /// ```
144 /// use numpy::{PyArray1, PyUntypedArrayMethods};
145 /// use pyo3::{types::{IntoPyDict, PyAnyMethods}, Python, ffi::c_str};
146 ///
147 /// # fn main() -> pyo3::PyResult<()> {
148 /// Python::attach(|py| {
149 /// let array = PyArray1::arange(py, 0, 10, 1);
150 /// assert!(array.is_contiguous());
151 ///
152 /// let view = py
153 /// .eval(c_str!("array[::2]"), None, Some(&[("array", array)].into_py_dict(py)?))?
154 /// .cast_into::<PyArray1<i32>>()?;
155 /// assert!(!view.is_contiguous());
156 /// # Ok(())
157 /// })
158 /// # }
159 /// ```
160 fn is_contiguous(&self) -> bool {
161 unsafe {
162 check_flags(
163 &*self.as_array_ptr(),
164 npyffi::NPY_ARRAY_C_CONTIGUOUS | npyffi::NPY_ARRAY_F_CONTIGUOUS,
165 )
166 }
167 }
168
169 /// Returns `true` if the internal data of the array is Fortran-style/column-major contiguous.
170 fn is_fortran_contiguous(&self) -> bool {
171 unsafe { check_flags(&*self.as_array_ptr(), npyffi::NPY_ARRAY_F_CONTIGUOUS) }
172 }
173
174 /// Returns `true` if the internal data of the array is C-style/row-major contiguous.
175 fn is_c_contiguous(&self) -> bool {
176 unsafe { check_flags(&*self.as_array_ptr(), npyffi::NPY_ARRAY_C_CONTIGUOUS) }
177 }
178
179 /// Returns the number of dimensions of the array.
180 ///
181 /// See also [`ndarray.ndim`][ndarray-ndim] and [`PyArray_NDIM`][PyArray_NDIM].
182 ///
183 /// # Example
184 ///
185 /// ```
186 /// use numpy::{PyArray3, PyUntypedArrayMethods};
187 /// use pyo3::Python;
188 ///
189 /// Python::attach(|py| {
190 /// let arr = PyArray3::<f64>::zeros(py, [4, 5, 6], false);
191 ///
192 /// assert_eq!(arr.ndim(), 3);
193 /// });
194 /// ```
195 ///
196 /// [ndarray-ndim]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ndim.html
197 /// [PyArray_NDIM]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_NDIM
198 #[inline]
199 fn ndim(&self) -> usize {
200 unsafe { (*self.as_array_ptr()).nd as usize }
201 }
202
203 /// Returns a slice indicating how many bytes to advance when iterating along each axis.
204 ///
205 /// See also [`ndarray.strides`][ndarray-strides] and [`PyArray_STRIDES`][PyArray_STRIDES].
206 ///
207 /// # Example
208 ///
209 /// ```
210 /// use numpy::{PyArray3, PyUntypedArrayMethods};
211 /// use pyo3::Python;
212 ///
213 /// Python::attach(|py| {
214 /// let arr = PyArray3::<f64>::zeros(py, [4, 5, 6], false);
215 ///
216 /// assert_eq!(arr.strides(), &[240, 48, 8]);
217 /// });
218 /// ```
219 /// [ndarray-strides]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html
220 /// [PyArray_STRIDES]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_STRIDES
221 #[inline]
222 fn strides(&self) -> &[isize] {
223 let n = self.ndim();
224 if n == 0 {
225 cold();
226 return &[];
227 }
228 let ptr = self.as_array_ptr();
229 unsafe {
230 let p = (*ptr).strides;
231 slice::from_raw_parts(p, n)
232 }
233 }
234
235 /// Returns a slice which contains dimmensions of the array.
236 ///
237 /// See also [`ndarray.shape`][ndaray-shape] and [`PyArray_DIMS`][PyArray_DIMS].
238 ///
239 /// # Example
240 ///
241 /// ```
242 /// use numpy::{PyArray3, PyUntypedArrayMethods};
243 /// use pyo3::Python;
244 ///
245 /// Python::attach(|py| {
246 /// let arr = PyArray3::<f64>::zeros(py, [4, 5, 6], false);
247 ///
248 /// assert_eq!(arr.shape(), &[4, 5, 6]);
249 /// });
250 /// ```
251 ///
252 /// [ndarray-shape]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html
253 /// [PyArray_DIMS]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_DIMS
254 #[inline]
255 fn shape(&self) -> &[usize] {
256 let n = self.ndim();
257 if n == 0 {
258 cold();
259 return &[];
260 }
261 let ptr = self.as_array_ptr();
262 unsafe {
263 let p = (*ptr).dimensions as *mut usize;
264 slice::from_raw_parts(p, n)
265 }
266 }
267
268 /// Calculates the total number of elements in the array.
269 fn len(&self) -> usize {
270 self.shape().iter().product()
271 }
272
273 /// Returns `true` if the there are no elements in the array.
274 fn is_empty(&self) -> bool {
275 self.shape().contains(&0)
276 }
277}
278
279mod sealed {
280 pub trait Sealed {}
281}
282
283use sealed::Sealed;
284
285fn check_flags(obj: &npyffi::PyArrayObject, flags: i32) -> bool {
286 obj.flags & flags != 0
287}
288
289impl<'py> PyUntypedArrayMethods<'py> for Bound<'py, PyUntypedArray> {
290 #[inline]
291 fn as_array_ptr(&self) -> *mut npyffi::PyArrayObject {
292 self.as_ptr().cast()
293 }
294
295 fn dtype(&self) -> Bound<'py, PyArrayDescr> {
296 unsafe {
297 let descr_ptr = (*self.as_array_ptr()).descr;
298 Bound::from_borrowed_ptr(self.py(), descr_ptr.cast()).cast_into_unchecked()
299 }
300 }
301}
302
303impl Sealed for Bound<'_, PyUntypedArray> {}
304
305// We won't be able to provide a `Deref` impl from `Bound<'_, PyArray<T, D>>` to
306// `Bound<'_, PyUntypedArray>`, so this seems to be the next best thing to do
307impl<'py, T, D> PyUntypedArrayMethods<'py> for Bound<'py, PyArray<T, D>> {
308 #[inline]
309 fn as_array_ptr(&self) -> *mut npyffi::PyArrayObject {
310 self.as_untyped().as_array_ptr()
311 }
312
313 #[inline]
314 fn dtype(&self) -> Bound<'py, PyArrayDescr> {
315 self.as_untyped().dtype()
316 }
317}
318
319impl<T, D> Sealed for Bound<'_, PyArray<T, D>> {}