numpy/sum_products.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
use std::borrow::Cow;
use std::ffi::{CStr, CString};
use std::ptr::null_mut;
use ndarray::{Dimension, IxDyn};
use pyo3::types::PyAnyMethods;
use pyo3::{Borrowed, Bound, FromPyObject, PyResult};
use crate::array::PyArray;
use crate::dtype::Element;
use crate::npyffi::{array::PY_ARRAY_API, NPY_CASTING, NPY_ORDER};
/// Return value of a function that can yield either an array or a scalar.
pub trait ArrayOrScalar<'py, T>: FromPyObject<'py> {}
impl<'py, T, D> ArrayOrScalar<'py, T> for Bound<'py, PyArray<T, D>>
where
T: Element,
D: Dimension,
{
}
impl<'py, T> ArrayOrScalar<'py, T> for T where T: Element + FromPyObject<'py> {}
/// Return the inner product of two arrays.
///
/// [NumPy's documentation][inner] has the details.
///
/// # Examples
///
/// Note that this function can either return a scalar...
///
/// ```
/// use pyo3::Python;
/// use numpy::{inner, pyarray, PyArray0};
///
/// Python::with_gil(|py| {
/// let vector = pyarray![py, 1.0, 2.0, 3.0];
/// let result: f64 = inner(&vector, &vector).unwrap();
/// assert_eq!(result, 14.0);
/// });
/// ```
///
/// ...or an array depending on its arguments.
///
/// ```
/// use pyo3::{Python, Bound};
/// use numpy::prelude::*;
/// use numpy::{inner, pyarray, PyArray0};
///
/// Python::with_gil(|py| {
/// let vector = pyarray![py, 1, 2, 3];
/// let result: Bound<'_, PyArray0<_>> = inner(&vector, &vector).unwrap();
/// assert_eq!(result.item(), 14);
/// });
/// ```
///
/// [inner]: https://numpy.org/doc/stable/reference/generated/numpy.inner.html
pub fn inner<'py, T, DIN1, DIN2, OUT>(
array1: &Bound<'py, PyArray<T, DIN1>>,
array2: &Bound<'py, PyArray<T, DIN2>>,
) -> PyResult<OUT>
where
T: Element,
DIN1: Dimension,
DIN2: Dimension,
OUT: ArrayOrScalar<'py, T>,
{
let py = array1.py();
let obj = unsafe {
let result = PY_ARRAY_API.PyArray_InnerProduct(py, array1.as_ptr(), array2.as_ptr());
Bound::from_owned_ptr_or_err(py, result)?
};
obj.extract()
}
/// Deprecated name for [`inner`].
#[deprecated(since = "0.23.0", note = "renamed to `inner`")]
#[inline]
pub fn inner_bound<'py, T, DIN1, DIN2, OUT>(
array1: &Bound<'py, PyArray<T, DIN1>>,
array2: &Bound<'py, PyArray<T, DIN2>>,
) -> PyResult<OUT>
where
T: Element,
DIN1: Dimension,
DIN2: Dimension,
OUT: ArrayOrScalar<'py, T>,
{
inner(array1, array2)
}
/// Return the dot product of two arrays.
///
/// [NumPy's documentation][dot] has the details.
///
/// # Examples
///
/// Note that this function can either return an array...
///
/// ```
/// use pyo3::{Python, Bound};
/// use ndarray::array;
/// use numpy::{dot, pyarray, PyArray2, PyArrayMethods};
///
/// Python::with_gil(|py| {
/// let matrix = pyarray![py, [1, 0], [0, 1]];
/// let another_matrix = pyarray![py, [4, 1], [2, 2]];
///
/// let result: Bound<'_, PyArray2<_>> = dot(&matrix, &another_matrix).unwrap();
///
/// assert_eq!(
/// result.readonly().as_array(),
/// array![[4, 1], [2, 2]]
/// );
/// });
/// ```
///
/// ...or a scalar depending on its arguments.
///
/// ```
/// use pyo3::Python;
/// use numpy::{dot, pyarray, PyArray0};
///
/// Python::with_gil(|py| {
/// let vector = pyarray![py, 1.0, 2.0, 3.0];
/// let result: f64 = dot(&vector, &vector).unwrap();
/// assert_eq!(result, 14.0);
/// });
/// ```
///
/// [dot]: https://numpy.org/doc/stable/reference/generated/numpy.dot.html
pub fn dot<'py, T, DIN1, DIN2, OUT>(
array1: &Bound<'py, PyArray<T, DIN1>>,
array2: &Bound<'py, PyArray<T, DIN2>>,
) -> PyResult<OUT>
where
T: Element,
DIN1: Dimension,
DIN2: Dimension,
OUT: ArrayOrScalar<'py, T>,
{
let py = array1.py();
let obj = unsafe {
let result = PY_ARRAY_API.PyArray_MatrixProduct(py, array1.as_ptr(), array2.as_ptr());
Bound::from_owned_ptr_or_err(py, result)?
};
obj.extract()
}
/// Deprecated name for [`dot`].
#[deprecated(since = "0.23.0", note = "renamed to `dot`")]
#[inline]
pub fn dot_bound<'py, T, DIN1, DIN2, OUT>(
array1: &Bound<'py, PyArray<T, DIN1>>,
array2: &Bound<'py, PyArray<T, DIN2>>,
) -> PyResult<OUT>
where
T: Element,
DIN1: Dimension,
DIN2: Dimension,
OUT: ArrayOrScalar<'py, T>,
{
dot(array1, array2)
}
/// Return the Einstein summation convention of given tensors.
///
/// This is usually invoked via the the [`einsum!`][crate::einsum!] macro.
pub fn einsum<'py, T, OUT>(
subscripts: &str,
arrays: &[Borrowed<'_, 'py, PyArray<T, IxDyn>>],
) -> PyResult<OUT>
where
T: Element,
OUT: ArrayOrScalar<'py, T>,
{
let subscripts = match CStr::from_bytes_with_nul(subscripts.as_bytes()) {
Ok(subscripts) => Cow::Borrowed(subscripts),
Err(_) => Cow::Owned(CString::new(subscripts).unwrap()),
};
let py = arrays[0].py();
let obj = unsafe {
let result = PY_ARRAY_API.PyArray_EinsteinSum(
py,
subscripts.as_ptr() as _,
arrays.len() as _,
arrays.as_ptr() as _,
null_mut(),
NPY_ORDER::NPY_KEEPORDER,
NPY_CASTING::NPY_NO_CASTING,
null_mut(),
);
Bound::from_owned_ptr_or_err(py, result)?
};
obj.extract()
}
/// Deprecated name for [`einsum`].
#[deprecated(since = "0.23.0", note = "renamed to `einsum`")]
#[inline]
pub fn einsum_bound<'py, T, OUT>(
subscripts: &str,
arrays: &[Borrowed<'_, 'py, PyArray<T, IxDyn>>],
) -> PyResult<OUT>
where
T: Element,
OUT: ArrayOrScalar<'py, T>,
{
einsum(subscripts, arrays)
}
/// Return the Einstein summation convention of given tensors.
///
/// For more about the Einstein summation convention, please refer to
/// [NumPy's documentation][einsum].
///
/// # Example
///
/// ```
/// use pyo3::{Python, Bound};
/// use ndarray::array;
/// use numpy::{einsum, pyarray, PyArray, PyArray2, PyArrayMethods};
///
/// Python::with_gil(|py| {
/// let tensor = PyArray::arange(py, 0, 2 * 3 * 4, 1).reshape([2, 3, 4]).unwrap();
/// let another_tensor = pyarray![py, [20, 30], [40, 50], [60, 70]];
///
/// let result: Bound<'_, PyArray2<_>> = einsum!("ijk,ji->ik", tensor, another_tensor).unwrap();
///
/// assert_eq!(
/// result.readonly().as_array(),
/// array![[640, 760, 880, 1000], [2560, 2710, 2860, 3010]]
/// );
/// });
/// ```
///
/// [einsum]: https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
#[macro_export]
macro_rules! einsum {
($subscripts:literal $(,$array:ident)+ $(,)*) => {{
let arrays = [$($array.to_dyn().as_borrowed(),)+];
$crate::einsum(concat!($subscripts, "\0"), &arrays)
}};
}
/// Deprecated name for [`einsum!`].
#[deprecated(since = "0.23.0", note = "renamed to `einsum!`")]
#[macro_export]
macro_rules! einsum_bound {
($subscripts:literal $(,$array:ident)+ $(,)*) => {{
let arrays = [$($array.to_dyn().as_borrowed(),)+];
$crate::einsum(concat!($subscripts, "\0"), &arrays)
}};
}