numpy/convert.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
//! Defines conversion traits between Rust types and NumPy data types.
use std::{mem, os::raw::c_int, ptr};
use ndarray::{ArrayBase, Data, Dim, Dimension, IntoDimension, Ix1, OwnedRepr};
use pyo3::{Bound, Python};
use crate::array::{PyArray, PyArrayMethods};
use crate::dtype::Element;
use crate::error::MAX_DIMENSIONALITY_ERR;
use crate::npyffi::{self, npy_intp};
use crate::slice_container::PySliceContainer;
/// Conversion trait from owning Rust types into [`PyArray`].
///
/// This trait takes ownership of `self`, which means it holds a pointer into the Rust heap.
///
/// In addition, some destructive methods like `resize` cannot be used with NumPy arrays constructed using this trait.
///
/// # Example
///
/// ```
/// use numpy::{PyArray, IntoPyArray, PyArrayMethods};
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let py_array = vec![1, 2, 3].into_pyarray(py);
///
/// assert_eq!(py_array.readonly().as_slice().unwrap(), &[1, 2, 3]);
///
/// // Array cannot be resized when its data is owned by Rust.
/// unsafe {
/// assert!(py_array.resize(100).is_err());
/// }
/// });
/// ```
pub trait IntoPyArray: Sized {
/// The element type of resulting array.
type Item: Element;
/// The dimension type of the resulting array.
type Dim: Dimension;
/// Consumes `self` and moves its data into a NumPy array.
fn into_pyarray<'py>(self, py: Python<'py>) -> Bound<'py, PyArray<Self::Item, Self::Dim>>;
/// Deprecated name for [`IntoPyArray::into_pyarray`].
#[deprecated(since = "0.23.0", note = "renamed to `IntoPyArray::into_pyarray`")]
#[inline]
fn into_pyarray_bound<'py>(
self,
py: Python<'py>,
) -> Bound<'py, PyArray<Self::Item, Self::Dim>> {
self.into_pyarray(py)
}
}
impl<T: Element> IntoPyArray for Box<[T]> {
type Item = T;
type Dim = Ix1;
fn into_pyarray<'py>(self, py: Python<'py>) -> Bound<'py, PyArray<Self::Item, Self::Dim>> {
let container = PySliceContainer::from(self);
let dims = Dim([container.len]);
let strides = [mem::size_of::<T>() as npy_intp];
// The data pointer is derived only after dissolving `Box` into `PySliceContainer`
// to avoid unsound aliasing of Box<[T]> which is currently noalias,
// c.f. https://github.com/rust-lang/unsafe-code-guidelines/issues/326
let data_ptr = container.ptr as *mut T;
unsafe { PyArray::from_raw_parts(py, dims, strides.as_ptr(), data_ptr, container) }
}
}
impl<T: Element> IntoPyArray for Vec<T> {
type Item = T;
type Dim = Ix1;
fn into_pyarray<'py>(mut self, py: Python<'py>) -> Bound<'py, PyArray<Self::Item, Self::Dim>> {
let dims = Dim([self.len()]);
let strides = [mem::size_of::<T>() as npy_intp];
let data_ptr = self.as_mut_ptr();
unsafe {
PyArray::from_raw_parts(
py,
dims,
strides.as_ptr(),
data_ptr,
PySliceContainer::from(self),
)
}
}
}
impl<A, D> IntoPyArray for ArrayBase<OwnedRepr<A>, D>
where
A: Element,
D: Dimension,
{
type Item = A;
type Dim = D;
fn into_pyarray<'py>(self, py: Python<'py>) -> Bound<'py, PyArray<Self::Item, Self::Dim>> {
PyArray::from_owned_array(py, self)
}
}
/// Conversion trait from borrowing Rust types to [`PyArray`].
///
/// This trait takes `&self` by reference, which means it allocates in Python heap and then copies the elements there.
///
/// # Examples
///
/// ```
/// use numpy::{PyArray, ToPyArray, PyArrayMethods};
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let py_array = vec![1, 2, 3].to_pyarray(py);
///
/// assert_eq!(py_array.readonly().as_slice().unwrap(), &[1, 2, 3]);
/// });
/// ```
///
/// Due to copying the elments, this method converts non-contiguous arrays to C-order contiguous arrays.
///
/// ```
/// use numpy::prelude::*;
/// use numpy::{PyArray, ToPyArray};
/// use ndarray::{arr3, s};
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let array = arr3(&[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]);
/// let py_array = array.slice(s![.., 0..1, ..]).to_pyarray(py);
///
/// assert_eq!(py_array.readonly().as_array(), arr3(&[[[1, 2, 3]], [[7, 8, 9]]]));
/// assert!(py_array.is_c_contiguous());
/// });
/// ```
pub trait ToPyArray {
/// The element type of resulting array.
type Item: Element;
/// The dimension type of the resulting array.
type Dim: Dimension;
/// Copies the content pointed to by `&self` into a newly allocated NumPy array.
fn to_pyarray<'py>(&self, py: Python<'py>) -> Bound<'py, PyArray<Self::Item, Self::Dim>>;
/// Deprecated name for [ToPyArray::to_pyarray`].
#[deprecated(since = "0.23.0", note = "renamed to ToPyArray::to_pyarray`")]
#[inline]
fn to_pyarray_bound<'py>(&self, py: Python<'py>) -> Bound<'py, PyArray<Self::Item, Self::Dim>> {
self.to_pyarray(py)
}
}
impl<T: Element> ToPyArray for [T] {
type Item = T;
type Dim = Ix1;
fn to_pyarray<'py>(&self, py: Python<'py>) -> Bound<'py, PyArray<Self::Item, Self::Dim>> {
PyArray::from_slice(py, self)
}
}
impl<S, D, A> ToPyArray for ArrayBase<S, D>
where
S: Data<Elem = A>,
D: Dimension,
A: Element,
{
type Item = A;
type Dim = D;
fn to_pyarray<'py>(&self, py: Python<'py>) -> Bound<'py, PyArray<Self::Item, Self::Dim>> {
let len = self.len();
match self.order() {
Some(flag) if A::IS_COPY => {
// if the array is contiguous, copy it by `copy_nonoverlapping`.
let strides = self.npy_strides();
unsafe {
let array = PyArray::new_uninit(py, self.raw_dim(), strides.as_ptr(), flag);
ptr::copy_nonoverlapping(self.as_ptr(), array.data(), len);
array
}
}
_ => {
// if the array is not contiguous, copy all elements by `ArrayBase::iter`.
let dim = self.raw_dim();
unsafe {
let array = PyArray::<A, _>::new(py, dim, false);
let mut data_ptr = array.data();
for item in self.iter() {
data_ptr.write(item.clone_ref(py));
data_ptr = data_ptr.add(1);
}
array
}
}
}
}
}
#[cfg(feature = "nalgebra")]
impl<N, R, C, S> ToPyArray for nalgebra::Matrix<N, R, C, S>
where
N: nalgebra::Scalar + Element,
R: nalgebra::Dim,
C: nalgebra::Dim,
S: nalgebra::Storage<N, R, C>,
{
type Item = N;
type Dim = crate::Ix2;
/// Note that the NumPy array always has Fortran memory layout
/// matching the [memory layout][memory-layout] used by [`nalgebra`].
///
/// [memory-layout]: https://nalgebra.org/docs/faq/#what-is-the-memory-layout-of-matrices
fn to_pyarray<'py>(&self, py: Python<'py>) -> Bound<'py, PyArray<Self::Item, Self::Dim>> {
unsafe {
let array = PyArray::<N, _>::new(py, (self.nrows(), self.ncols()), true);
let mut data_ptr = array.data();
if self.data.is_contiguous() {
ptr::copy_nonoverlapping(self.data.ptr(), data_ptr, self.len());
} else {
for item in self.iter() {
data_ptr.write(item.clone_ref(py));
data_ptr = data_ptr.add(1);
}
}
array
}
}
}
pub(crate) trait ArrayExt {
fn npy_strides(&self) -> [npyffi::npy_intp; 32];
fn order(&self) -> Option<c_int>;
}
impl<A, S, D> ArrayExt for ArrayBase<S, D>
where
S: Data<Elem = A>,
D: Dimension,
{
fn npy_strides(&self) -> [npyffi::npy_intp; 32] {
let strides = self.strides();
let itemsize = mem::size_of::<A>() as isize;
assert!(strides.len() <= 32, "{}", MAX_DIMENSIONALITY_ERR);
let mut new_strides = [0; 32];
for i in 0..strides.len() {
new_strides[i] = (strides[i] * itemsize) as npyffi::npy_intp;
}
new_strides
}
fn order(&self) -> Option<c_int> {
if self.is_standard_layout() {
Some(npyffi::NPY_ORDER::NPY_CORDER as _)
} else if self.ndim() > 1 && self.raw_view().reversed_axes().is_standard_layout() {
Some(npyffi::NPY_ORDER::NPY_FORTRANORDER as _)
} else {
None
}
}
}
/// Utility trait to specify the dimensions of an array.
pub trait ToNpyDims: Dimension + Sealed {
#[doc(hidden)]
fn ndim_cint(&self) -> c_int {
self.ndim() as c_int
}
#[doc(hidden)]
fn as_dims_ptr(&mut self) -> *mut npyffi::npy_intp {
self.slice_mut().as_ptr() as *mut npyffi::npy_intp
}
#[doc(hidden)]
fn to_npy_dims(&mut self) -> npyffi::PyArray_Dims {
npyffi::PyArray_Dims {
ptr: self.as_dims_ptr(),
len: self.ndim_cint(),
}
}
}
mod sealed {
pub trait Sealed {}
}
use sealed::Sealed;
impl<D> ToNpyDims for D where D: Dimension {}
/// Trait implemented by types that can be used to index an array.
///
/// This is equivalent to [`ndarray::NdIndex`] but accounts for
/// NumPy strides being in units of bytes instead of elements.
///
/// All types which implement [`IntoDimension`] implement this trait as well.
/// This includes at least
/// - [tuple](https://doc.rust-lang.org/stable/std/primitive.tuple.html)
/// - [array](https://doc.rust-lang.org/stable/std/primitive.array.html)
/// - [slice](https://doc.rust-lang.org/stable/std/primitive.slice.html)
pub trait NpyIndex: IntoDimension + Sealed {
#[doc(hidden)]
fn get_checked<T>(self, dims: &[usize], strides: &[isize]) -> Option<isize>;
#[doc(hidden)]
fn get_unchecked<T>(self, strides: &[isize]) -> isize;
}
impl<D: IntoDimension> Sealed for D {}
impl<D: IntoDimension> NpyIndex for D {
fn get_checked<T>(self, dims: &[usize], strides: &[isize]) -> Option<isize> {
let indices = self.into_dimension();
let indices = indices.slice();
if indices.len() != dims.len() {
return None;
}
if indices.iter().zip(dims).any(|(i, d)| i >= d) {
return None;
}
Some(get_unchecked_impl::<T>(indices, strides))
}
fn get_unchecked<T>(self, strides: &[isize]) -> isize {
let indices = self.into_dimension();
let indices = indices.slice();
get_unchecked_impl::<T>(indices, strides)
}
}
fn get_unchecked_impl<T>(indices: &[usize], strides: &[isize]) -> isize {
let size = mem::size_of::<T>() as isize;
indices
.iter()
.zip(strides)
.map(|(&i, stride)| stride * i as isize / size)
.sum()
}