numpy/
array.rs

1//! Safe interface for NumPy's [N-dimensional arrays][ndarray]
2//!
3//! [ndarray]: https://numpy.org/doc/stable/reference/arrays.ndarray.html
4
5use std::{
6    marker::PhantomData,
7    mem,
8    os::raw::{c_int, c_void},
9    ptr, slice,
10};
11
12use ndarray::{
13    Array, ArrayBase, ArrayView, ArrayViewMut, Axis, Data, Dim, Dimension, IntoDimension, Ix0, Ix1,
14    Ix2, Ix3, Ix4, Ix5, Ix6, IxDyn, RawArrayView, RawArrayViewMut, RawData, ShapeBuilder,
15    StrideShape,
16};
17use num_traits::AsPrimitive;
18use pyo3::{
19    ffi,
20    types::{DerefToPyAny, PyAnyMethods, PyModule},
21    Bound, DowncastError, Py, PyAny, PyErr, PyObject, PyResult, PyTypeInfo, Python,
22};
23
24use crate::borrow::{PyReadonlyArray, PyReadwriteArray};
25use crate::cold;
26use crate::convert::{ArrayExt, IntoPyArray, NpyIndex, ToNpyDims, ToPyArray};
27use crate::dtype::{Element, PyArrayDescrMethods};
28use crate::error::{
29    BorrowError, DimensionalityError, FromVecError, IgnoreError, NotContiguousError, TypeError,
30    DIMENSIONALITY_MISMATCH_ERR, MAX_DIMENSIONALITY_ERR,
31};
32use crate::npyffi::{self, npy_intp, NPY_ORDER, PY_ARRAY_API};
33use crate::slice_container::PySliceContainer;
34use crate::untyped_array::{PyUntypedArray, PyUntypedArrayMethods};
35
36/// A safe, statically-typed wrapper for NumPy's [`ndarray`][ndarray] class.
37///
38/// # Memory location
39///
40/// - Allocated by Rust: Constructed via [`IntoPyArray`] or
41///   [`from_vec`][Self::from_vec] or [`from_owned_array`][Self::from_owned_array].
42///
43/// These methods transfers ownership of the Rust allocation into a suitable Python object
44/// and uses the memory as the internal buffer backing the NumPy array.
45///
46/// Please note that some destructive methods like [`resize`][Self::resize] will fail
47/// when used with this kind of array as NumPy cannot reallocate the internal buffer.
48///
49/// - Allocated by NumPy: Constructed via other methods, like [`ToPyArray`] or
50///   [`from_slice`][Self::from_slice] or [`from_array`][Self::from_array].
51///
52/// These methods allocate memory in Python's private heap via NumPy's API.
53///
54/// In both cases, `PyArray` is managed by Python so it can neither be moved from
55/// nor deallocated manually.
56///
57/// # References
58///
59/// Like [`new`][Self::new], all constructor methods of `PyArray` return a shared reference `&PyArray`
60/// instead of an owned value. This design follows [PyO3's ownership concept][pyo3-memory],
61/// i.e. the return value is GIL-bound owning reference into Python's heap.
62///
63/// # Element type and dimensionality
64///
65/// `PyArray` has two type parametes `T` and `D`.
66/// `T` represents the type of its elements, e.g. [`f32`] or [`PyObject`].
67/// `D` represents its dimensionality, e.g [`Ix2`][type@Ix2] or [`IxDyn`][type@IxDyn].
68///
69/// Element types are Rust types which implement the [`Element`] trait.
70/// Dimensions are represented by the [`ndarray::Dimension`] trait.
71///
72/// Typically, `Ix1, Ix2, ...` are used for fixed dimensionality arrays,
73/// and `IxDyn` is used for dynamic dimensionality arrays. Type aliases
74/// for combining `PyArray` with these types are provided, e.g. [`PyArray1`] or [`PyArrayDyn`].
75///
76/// To specify concrete dimension like `3×4×5`, types which implement the [`ndarray::IntoDimension`]
77/// trait are used. Typically, this means arrays like `[3, 4, 5]` or tuples like `(3, 4, 5)`.
78///
79/// # Example
80///
81/// ```
82/// use numpy::{PyArray, PyArrayMethods};
83/// use ndarray::{array, Array};
84/// use pyo3::Python;
85///
86/// Python::with_gil(|py| {
87///     let pyarray = PyArray::arange(py, 0., 4., 1.).reshape([2, 2]).unwrap();
88///     let array = array![[3., 4.], [5., 6.]];
89///
90///     assert_eq!(
91///         array.dot(&pyarray.readonly().as_array()),
92///         array![[8., 15.], [12., 23.]]
93///     );
94/// });
95/// ```
96///
97/// [ndarray]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
98/// [pyo3-memory]: https://pyo3.rs/main/memory.html
99#[repr(transparent)]
100pub struct PyArray<T, D>(PyAny, PhantomData<T>, PhantomData<D>);
101
102/// Zero-dimensional array.
103pub type PyArray0<T> = PyArray<T, Ix0>;
104/// One-dimensional array.
105pub type PyArray1<T> = PyArray<T, Ix1>;
106/// Two-dimensional array.
107pub type PyArray2<T> = PyArray<T, Ix2>;
108/// Three-dimensional array.
109pub type PyArray3<T> = PyArray<T, Ix3>;
110/// Four-dimensional array.
111pub type PyArray4<T> = PyArray<T, Ix4>;
112/// Five-dimensional array.
113pub type PyArray5<T> = PyArray<T, Ix5>;
114/// Six-dimensional array.
115pub type PyArray6<T> = PyArray<T, Ix6>;
116/// Dynamic-dimensional array.
117pub type PyArrayDyn<T> = PyArray<T, IxDyn>;
118
119/// Returns a handle to NumPy's multiarray module.
120pub fn get_array_module<'py>(py: Python<'py>) -> PyResult<Bound<'py, PyModule>> {
121    PyModule::import(py, npyffi::array::mod_name(py)?)
122}
123
124impl<T, D> DerefToPyAny for PyArray<T, D> {}
125
126unsafe impl<T: Element, D: Dimension> PyTypeInfo for PyArray<T, D> {
127    const NAME: &'static str = "PyArray<T, D>";
128    const MODULE: Option<&'static str> = Some("numpy");
129
130    fn type_object_raw<'py>(py: Python<'py>) -> *mut ffi::PyTypeObject {
131        unsafe { npyffi::PY_ARRAY_API.get_type_object(py, npyffi::NpyTypes::PyArray_Type) }
132    }
133
134    fn is_type_of(ob: &Bound<'_, PyAny>) -> bool {
135        Self::extract::<IgnoreError>(ob).is_ok()
136    }
137}
138
139impl<T: Element, D: Dimension> PyArray<T, D> {
140    fn extract<'a, 'py, E>(ob: &'a Bound<'py, PyAny>) -> Result<&'a Bound<'py, Self>, E>
141    where
142        E: From<DowncastError<'a, 'py>> + From<DimensionalityError> + From<TypeError<'py>>,
143    {
144        // Check if the object is an array.
145        let array = unsafe {
146            if npyffi::PyArray_Check(ob.py(), ob.as_ptr()) == 0 {
147                return Err(DowncastError::new(ob, <Self as PyTypeInfo>::NAME).into());
148            }
149            ob.downcast_unchecked::<Self>()
150        };
151
152        // Check if the dimensionality matches `D`.
153        let src_ndim = array.ndim();
154        if let Some(dst_ndim) = D::NDIM {
155            if src_ndim != dst_ndim {
156                return Err(DimensionalityError::new(src_ndim, dst_ndim).into());
157            }
158        }
159
160        // Check if the element type matches `T`.
161        let src_dtype = array.dtype();
162        let dst_dtype = T::get_dtype(ob.py());
163        if !src_dtype.is_equiv_to(&dst_dtype) {
164            return Err(TypeError::new(src_dtype, dst_dtype).into());
165        }
166
167        Ok(array)
168    }
169
170    /// Creates a new uninitialized NumPy array.
171    ///
172    /// If `is_fortran` is true, then it has Fortran/column-major order,
173    /// otherwise it has C/row-major order.
174    ///
175    /// # Safety
176    ///
177    /// The returned array will always be safe to be dropped as the elements must either
178    /// be trivially copyable (as indicated by `<T as Element>::IS_COPY`) or be pointers
179    /// into Python's heap, which NumPy will automatically zero-initialize.
180    ///
181    /// However, the elements themselves will not be valid and should be initialized manually
182    /// using raw pointers obtained via [`uget_raw`][Self::uget_raw]. Before that, all methods
183    /// which produce references to the elements invoke undefined behaviour. In particular,
184    /// zero-initialized pointers are _not_ valid instances of `PyObject`.
185    ///
186    /// # Example
187    ///
188    /// ```
189    /// use numpy::prelude::*;
190    /// use numpy::PyArray3;
191    /// use pyo3::Python;
192    ///
193    /// Python::with_gil(|py| {
194    ///     let arr = unsafe {
195    ///         let arr = PyArray3::<i32>::new(py, [4, 5, 6], false);
196    ///
197    ///         for i in 0..4 {
198    ///             for j in 0..5 {
199    ///                 for k in 0..6 {
200    ///                     arr.uget_raw([i, j, k]).write((i * j * k) as i32);
201    ///                 }
202    ///             }
203    ///         }
204    ///
205    ///         arr
206    ///     };
207    ///
208    ///     assert_eq!(arr.shape(), &[4, 5, 6]);
209    /// });
210    /// ```
211    pub unsafe fn new<'py, ID>(py: Python<'py>, dims: ID, is_fortran: bool) -> Bound<'py, Self>
212    where
213        ID: IntoDimension<Dim = D>,
214    {
215        let flags = c_int::from(is_fortran);
216        Self::new_uninit(py, dims, ptr::null_mut(), flags)
217    }
218
219    pub(crate) unsafe fn new_uninit<'py, ID>(
220        py: Python<'py>,
221        dims: ID,
222        strides: *const npy_intp,
223        flag: c_int,
224    ) -> Bound<'py, Self>
225    where
226        ID: IntoDimension<Dim = D>,
227    {
228        let mut dims = dims.into_dimension();
229        let ptr = PY_ARRAY_API.PyArray_NewFromDescr(
230            py,
231            PY_ARRAY_API.get_type_object(py, npyffi::NpyTypes::PyArray_Type),
232            T::get_dtype(py).into_dtype_ptr(),
233            dims.ndim_cint(),
234            dims.as_dims_ptr(),
235            strides as *mut npy_intp, // strides
236            ptr::null_mut(),          // data
237            flag,                     // flag
238            ptr::null_mut(),          // obj
239        );
240
241        Bound::from_owned_ptr(py, ptr).downcast_into_unchecked()
242    }
243
244    unsafe fn new_with_data<'py, ID>(
245        py: Python<'py>,
246        dims: ID,
247        strides: *const npy_intp,
248        data_ptr: *const T,
249        container: *mut PyAny,
250    ) -> Bound<'py, Self>
251    where
252        ID: IntoDimension<Dim = D>,
253    {
254        let mut dims = dims.into_dimension();
255        let ptr = PY_ARRAY_API.PyArray_NewFromDescr(
256            py,
257            PY_ARRAY_API.get_type_object(py, npyffi::NpyTypes::PyArray_Type),
258            T::get_dtype(py).into_dtype_ptr(),
259            dims.ndim_cint(),
260            dims.as_dims_ptr(),
261            strides as *mut npy_intp,    // strides
262            data_ptr as *mut c_void,     // data
263            npyffi::NPY_ARRAY_WRITEABLE, // flag
264            ptr::null_mut(),             // obj
265        );
266
267        PY_ARRAY_API.PyArray_SetBaseObject(
268            py,
269            ptr as *mut npyffi::PyArrayObject,
270            container as *mut ffi::PyObject,
271        );
272
273        Bound::from_owned_ptr(py, ptr).downcast_into_unchecked()
274    }
275
276    pub(crate) unsafe fn from_raw_parts<'py>(
277        py: Python<'py>,
278        dims: D,
279        strides: *const npy_intp,
280        data_ptr: *const T,
281        container: PySliceContainer,
282    ) -> Bound<'py, Self> {
283        let container = Bound::new(py, container)
284            .expect("Failed to create slice container")
285            .into_ptr();
286
287        Self::new_with_data(py, dims, strides, data_ptr, container.cast())
288    }
289
290    /// Creates a NumPy array backed by `array` and ties its ownership to the Python object `container`.
291    ///
292    /// The resulting NumPy array will be writeable from Python space.  If this is undesireable, use
293    /// [PyReadwriteArray::make_nonwriteable].
294    ///
295    /// # Safety
296    ///
297    /// `container` is set as a base object of the returned array which must not be dropped until `container` is dropped.
298    /// Furthermore, `array` must not be reallocated from the time this method is called and until `container` is dropped.
299    ///
300    /// # Example
301    ///
302    /// ```rust
303    /// # use pyo3::prelude::*;
304    /// # use numpy::{ndarray::Array1, PyArray1};
305    /// #
306    /// #[pyclass]
307    /// struct Owner {
308    ///     array: Array1<f64>,
309    /// }
310    ///
311    /// #[pymethods]
312    /// impl Owner {
313    ///     #[getter]
314    ///     fn array<'py>(this: Bound<'py, Self>) -> Bound<'py, PyArray1<f64>> {
315    ///         let array = &this.borrow().array;
316    ///
317    ///         // SAFETY: The memory backing `array` will stay valid as long as this object is alive
318    ///         // as we do not modify `array` in any way which would cause it to be reallocated.
319    ///         unsafe { PyArray1::borrow_from_array(array, this.into_any()) }
320    ///     }
321    /// }
322    /// ```
323    pub unsafe fn borrow_from_array<'py, S>(
324        array: &ArrayBase<S, D>,
325        container: Bound<'py, PyAny>,
326    ) -> Bound<'py, Self>
327    where
328        S: Data<Elem = T>,
329    {
330        let (strides, dims) = (array.npy_strides(), array.raw_dim());
331        let data_ptr = array.as_ptr();
332
333        let py = container.py();
334
335        Self::new_with_data(
336            py,
337            dims,
338            strides.as_ptr(),
339            data_ptr,
340            container.into_ptr().cast(),
341        )
342    }
343
344    /// Construct a new NumPy array filled with zeros.
345    ///
346    /// If `is_fortran` is true, then it has Fortran/column-major order,
347    /// otherwise it has C/row-major order.
348    ///
349    /// For arrays of Python objects, this will fill the array
350    /// with valid pointers to zero-valued Python integer objects.
351    ///
352    /// See also [`numpy.zeros`][numpy-zeros] and [`PyArray_Zeros`][PyArray_Zeros].
353    ///
354    /// # Example
355    ///
356    /// ```
357    /// use numpy::{PyArray2, PyArrayMethods};
358    /// use pyo3::Python;
359    ///
360    /// Python::with_gil(|py| {
361    ///     let pyarray = PyArray2::<usize>::zeros(py, [2, 2], true);
362    ///
363    ///     assert_eq!(pyarray.readonly().as_slice().unwrap(), [0; 4]);
364    /// });
365    /// ```
366    ///
367    /// [numpy-zeros]: https://numpy.org/doc/stable/reference/generated/numpy.zeros.html
368    /// [PyArray_Zeros]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_Zeros
369    pub fn zeros<ID>(py: Python<'_>, dims: ID, is_fortran: bool) -> Bound<'_, Self>
370    where
371        ID: IntoDimension<Dim = D>,
372    {
373        let mut dims = dims.into_dimension();
374        unsafe {
375            let ptr = PY_ARRAY_API.PyArray_Zeros(
376                py,
377                dims.ndim_cint(),
378                dims.as_dims_ptr(),
379                T::get_dtype(py).into_dtype_ptr(),
380                if is_fortran { -1 } else { 0 },
381            );
382            Bound::from_owned_ptr(py, ptr).downcast_into_unchecked()
383        }
384    }
385
386    /// Constructs a NumPy from an [`ndarray::Array`]
387    ///
388    /// This method uses the internal [`Vec`] of the [`ndarray::Array`] as the base object of the NumPy array.
389    ///
390    /// # Example
391    ///
392    /// ```
393    /// use numpy::{PyArray, PyArrayMethods};
394    /// use ndarray::array;
395    /// use pyo3::Python;
396    ///
397    /// Python::with_gil(|py| {
398    ///     let pyarray = PyArray::from_owned_array(py, array![[1, 2], [3, 4]]);
399    ///
400    ///     assert_eq!(pyarray.readonly().as_array(), array![[1, 2], [3, 4]]);
401    /// });
402    /// ```
403    pub fn from_owned_array(py: Python<'_>, mut arr: Array<T, D>) -> Bound<'_, Self> {
404        let (strides, dims) = (arr.npy_strides(), arr.raw_dim());
405        let data_ptr = arr.as_mut_ptr();
406        unsafe {
407            Self::from_raw_parts(
408                py,
409                dims,
410                strides.as_ptr(),
411                data_ptr,
412                PySliceContainer::from(arr),
413            )
414        }
415    }
416
417    /// Construct a NumPy array from a [`ndarray::ArrayBase`].
418    ///
419    /// This method allocates memory in Python's heap via the NumPy API,
420    /// and then copies all elements of the array there.
421    ///
422    /// # Example
423    ///
424    /// ```
425    /// use numpy::{PyArray, PyArrayMethods};
426    /// use ndarray::array;
427    /// use pyo3::Python;
428    ///
429    /// Python::with_gil(|py| {
430    ///     let pyarray = PyArray::from_array(py, &array![[1, 2], [3, 4]]);
431    ///
432    ///     assert_eq!(pyarray.readonly().as_array(), array![[1, 2], [3, 4]]);
433    /// });
434    /// ```
435    pub fn from_array<'py, S>(py: Python<'py>, arr: &ArrayBase<S, D>) -> Bound<'py, Self>
436    where
437        S: Data<Elem = T>,
438    {
439        ToPyArray::to_pyarray(arr, py)
440    }
441}
442
443impl<D: Dimension> PyArray<PyObject, D> {
444    /// Construct a NumPy array containing objects stored in a [`ndarray::Array`]
445    ///
446    /// This method uses the internal [`Vec`] of the [`ndarray::Array`] as the base object of the NumPy array.
447    ///
448    /// # Example
449    ///
450    /// ```
451    /// use ndarray::array;
452    /// use pyo3::{pyclass, Py, Python, types::PyAnyMethods};
453    /// use numpy::{PyArray, PyArrayMethods};
454    ///
455    /// #[pyclass]
456    /// # #[allow(dead_code)]
457    /// struct CustomElement {
458    ///     foo: i32,
459    ///     bar: f64,
460    /// }
461    ///
462    /// Python::with_gil(|py| {
463    ///     let array = array![
464    ///         Py::new(py, CustomElement {
465    ///             foo: 1,
466    ///             bar: 2.0,
467    ///         }).unwrap(),
468    ///         Py::new(py, CustomElement {
469    ///             foo: 3,
470    ///             bar: 4.0,
471    ///         }).unwrap(),
472    ///     ];
473    ///
474    ///     let pyarray = PyArray::from_owned_object_array(py, array);
475    ///
476    ///     assert!(pyarray.readonly().as_array().get(0).unwrap().bind(py).is_instance_of::<CustomElement>());
477    /// });
478    /// ```
479    pub fn from_owned_object_array<T>(py: Python<'_>, mut arr: Array<Py<T>, D>) -> Bound<'_, Self> {
480        let (strides, dims) = (arr.npy_strides(), arr.raw_dim());
481        let data_ptr = arr.as_mut_ptr() as *const PyObject;
482        unsafe {
483            Self::from_raw_parts(
484                py,
485                dims,
486                strides.as_ptr(),
487                data_ptr,
488                PySliceContainer::from(arr),
489            )
490        }
491    }
492}
493
494impl<T: Element> PyArray<T, Ix1> {
495    /// Construct a one-dimensional array from a [mod@slice].
496    ///
497    /// # Example
498    ///
499    /// ```
500    /// use numpy::{PyArray, PyArrayMethods};
501    /// use pyo3::Python;
502    ///
503    /// Python::with_gil(|py| {
504    ///     let slice = &[1, 2, 3, 4, 5];
505    ///     let pyarray = PyArray::from_slice(py, slice);
506    ///     assert_eq!(pyarray.readonly().as_slice().unwrap(), &[1, 2, 3, 4, 5]);
507    /// });
508    /// ```
509    pub fn from_slice<'py>(py: Python<'py>, slice: &[T]) -> Bound<'py, Self> {
510        unsafe {
511            let array = PyArray::new(py, [slice.len()], false);
512            let mut data_ptr = array.data();
513            clone_elements(py, slice, &mut data_ptr);
514            array
515        }
516    }
517
518    /// Construct a one-dimensional array from a [`Vec<T>`][Vec].
519    ///
520    /// # Example
521    ///
522    /// ```
523    /// use numpy::{PyArray, PyArrayMethods};
524    /// use pyo3::Python;
525    ///
526    /// Python::with_gil(|py| {
527    ///     let vec = vec![1, 2, 3, 4, 5];
528    ///     let pyarray = PyArray::from_vec(py, vec);
529    ///     assert_eq!(pyarray.readonly().as_slice().unwrap(), &[1, 2, 3, 4, 5]);
530    /// });
531    /// ```
532    #[inline(always)]
533    pub fn from_vec<'py>(py: Python<'py>, vec: Vec<T>) -> Bound<'py, Self> {
534        vec.into_pyarray(py)
535    }
536
537    /// Construct a one-dimensional array from an [`Iterator`].
538    ///
539    /// If no reliable [`size_hint`][Iterator::size_hint] is available,
540    /// this method can allocate memory multiple times, which can hurt performance.
541    ///
542    /// # Example
543    ///
544    /// ```
545    /// use numpy::{PyArray, PyArrayMethods};
546    /// use pyo3::Python;
547    ///
548    /// Python::with_gil(|py| {
549    ///     let pyarray = PyArray::from_iter(py, "abcde".chars().map(u32::from));
550    ///     assert_eq!(pyarray.readonly().as_slice().unwrap(), &[97, 98, 99, 100, 101]);
551    /// });
552    /// ```
553    pub fn from_iter<I>(py: Python<'_>, iter: I) -> Bound<'_, Self>
554    where
555        I: IntoIterator<Item = T>,
556    {
557        let data = iter.into_iter().collect::<Vec<_>>();
558        data.into_pyarray(py)
559    }
560}
561
562impl<T: Element> PyArray<T, Ix2> {
563    /// Construct a two-dimension array from a [`Vec<Vec<T>>`][Vec].
564    ///
565    /// This function checks all dimensions of the inner vectors and returns
566    /// an error if they are not all equal.
567    ///
568    /// # Example
569    ///
570    /// ```
571    /// use numpy::{PyArray, PyArrayMethods};
572    /// use pyo3::Python;
573    /// use ndarray::array;
574    ///
575    /// Python::with_gil(|py| {
576    ///     let vec2 = vec![vec![11, 12], vec![21, 22]];
577    ///     let pyarray = PyArray::from_vec2(py, &vec2).unwrap();
578    ///     assert_eq!(pyarray.readonly().as_array(), array![[11, 12], [21, 22]]);
579    ///
580    ///     let ragged_vec2 = vec![vec![11, 12], vec![21]];
581    ///     assert!(PyArray::from_vec2(py, &ragged_vec2).is_err());
582    /// });
583    /// ```
584    pub fn from_vec2<'py>(py: Python<'py>, v: &[Vec<T>]) -> Result<Bound<'py, Self>, FromVecError> {
585        let len2 = v.first().map_or(0, |v| v.len());
586        let dims = [v.len(), len2];
587        // SAFETY: The result of `Self::new` is always safe to drop.
588        unsafe {
589            let array = Self::new(py, dims, false);
590            let mut data_ptr = array.data();
591            for v in v {
592                if v.len() != len2 {
593                    cold();
594                    return Err(FromVecError::new(v.len(), len2));
595                }
596                clone_elements(py, v, &mut data_ptr);
597            }
598            Ok(array)
599        }
600    }
601}
602
603impl<T: Element> PyArray<T, Ix3> {
604    /// Construct a three-dimensional array from a [`Vec<Vec<Vec<T>>>`][Vec].
605    ///
606    /// This function checks all dimensions of the inner vectors and returns
607    /// an error if they are not all equal.
608    ///
609    /// # Example
610    ///
611    /// ```
612    /// use numpy::{PyArray, PyArrayMethods};
613    /// use pyo3::Python;
614    /// use ndarray::array;
615    ///
616    /// Python::with_gil(|py| {
617    ///     let vec3 = vec![
618    ///         vec![vec![111, 112], vec![121, 122]],
619    ///         vec![vec![211, 212], vec![221, 222]],
620    ///     ];
621    ///     let pyarray = PyArray::from_vec3(py, &vec3).unwrap();
622    ///     assert_eq!(
623    ///         pyarray.readonly().as_array(),
624    ///         array![[[111, 112], [121, 122]], [[211, 212], [221, 222]]]
625    ///     );
626    ///
627    ///     let ragged_vec3 = vec![
628    ///         vec![vec![111, 112], vec![121, 122]],
629    ///         vec![vec![211], vec![221, 222]],
630    ///     ];
631    ///     assert!(PyArray::from_vec3(py, &ragged_vec3).is_err());
632    /// });
633    /// ```
634    pub fn from_vec3<'py>(
635        py: Python<'py>,
636        v: &[Vec<Vec<T>>],
637    ) -> Result<Bound<'py, Self>, FromVecError> {
638        let len2 = v.first().map_or(0, |v| v.len());
639        let len3 = v.first().map_or(0, |v| v.first().map_or(0, |v| v.len()));
640        let dims = [v.len(), len2, len3];
641        // SAFETY: The result of `Self::new` is always safe to drop.
642        unsafe {
643            let array = Self::new(py, dims, false);
644            let mut data_ptr = array.data();
645            for v in v {
646                if v.len() != len2 {
647                    cold();
648                    return Err(FromVecError::new(v.len(), len2));
649                }
650                for v in v {
651                    if v.len() != len3 {
652                        cold();
653                        return Err(FromVecError::new(v.len(), len3));
654                    }
655                    clone_elements(py, v, &mut data_ptr);
656                }
657            }
658            Ok(array)
659        }
660    }
661}
662
663impl<T: Element + AsPrimitive<f64>> PyArray<T, Ix1> {
664    /// Return evenly spaced values within a given interval.
665    ///
666    /// See [numpy.arange][numpy.arange] for the Python API and [PyArray_Arange][PyArray_Arange] for the C API.
667    ///
668    /// # Example
669    ///
670    /// ```
671    /// use numpy::{PyArray, PyArrayMethods};
672    /// use pyo3::Python;
673    ///
674    /// Python::with_gil(|py| {
675    ///     let pyarray = PyArray::arange(py, 2.0, 4.0, 0.5);
676    ///     assert_eq!(pyarray.readonly().as_slice().unwrap(), &[2.0, 2.5, 3.0, 3.5]);
677    ///
678    ///     let pyarray = PyArray::arange(py, -2, 4, 3);
679    ///     assert_eq!(pyarray.readonly().as_slice().unwrap(), &[-2, 1]);
680    /// });
681    /// ```
682    ///
683    /// [numpy.arange]: https://numpy.org/doc/stable/reference/generated/numpy.arange.html
684    /// [PyArray_Arange]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_Arange
685    pub fn arange<'py>(py: Python<'py>, start: T, stop: T, step: T) -> Bound<'py, Self> {
686        unsafe {
687            let ptr = PY_ARRAY_API.PyArray_Arange(
688                py,
689                start.as_(),
690                stop.as_(),
691                step.as_(),
692                T::get_dtype(py).num(),
693            );
694            Bound::from_owned_ptr(py, ptr).downcast_into_unchecked()
695        }
696    }
697}
698
699unsafe fn clone_elements<T: Element>(py: Python<'_>, elems: &[T], data_ptr: &mut *mut T) {
700    if T::IS_COPY {
701        ptr::copy_nonoverlapping(elems.as_ptr(), *data_ptr, elems.len());
702        *data_ptr = data_ptr.add(elems.len());
703    } else {
704        for elem in elems {
705            data_ptr.write(elem.clone_ref(py));
706            *data_ptr = data_ptr.add(1);
707        }
708    }
709}
710
711/// Implementation of functionality for [`PyArray<T, D>`].
712#[doc(alias = "PyArray")]
713pub trait PyArrayMethods<'py, T, D>: PyUntypedArrayMethods<'py> {
714    /// Access an untyped representation of this array.
715    fn as_untyped(&self) -> &Bound<'py, PyUntypedArray>;
716
717    /// Returns a pointer to the first element of the array.
718    fn data(&self) -> *mut T;
719
720    /// Same as [`shape`][PyUntypedArray::shape], but returns `D` instead of `&[usize]`.
721    #[inline(always)]
722    fn dims(&self) -> D
723    where
724        D: Dimension,
725    {
726        D::from_dimension(&Dim(self.shape())).expect(DIMENSIONALITY_MISMATCH_ERR)
727    }
728
729    /// Returns an immutable view of the internal data as a slice.
730    ///
731    /// # Safety
732    ///
733    /// Calling this method is undefined behaviour if the underlying array
734    /// is aliased mutably by other instances of `PyArray`
735    /// or concurrently modified by Python or other native code.
736    ///
737    /// Please consider the safe alternative [`PyReadonlyArray::as_slice`].
738    unsafe fn as_slice(&self) -> Result<&[T], NotContiguousError>
739    where
740        T: Element,
741        D: Dimension,
742    {
743        if self.is_contiguous() {
744            Ok(slice::from_raw_parts(self.data(), self.len()))
745        } else {
746            Err(NotContiguousError)
747        }
748    }
749
750    /// Returns a mutable view of the internal data as a slice.
751    ///
752    /// # Safety
753    ///
754    /// Calling this method is undefined behaviour if the underlying array
755    /// is aliased immutably or mutably by other instances of [`PyArray`]
756    /// or concurrently modified by Python or other native code.
757    ///
758    /// Please consider the safe alternative [`PyReadwriteArray::as_slice_mut`].
759    unsafe fn as_slice_mut(&self) -> Result<&mut [T], NotContiguousError>
760    where
761        T: Element,
762        D: Dimension,
763    {
764        if self.is_contiguous() {
765            Ok(slice::from_raw_parts_mut(self.data(), self.len()))
766        } else {
767            Err(NotContiguousError)
768        }
769    }
770
771    /// Get a reference of the specified element if the given index is valid.
772    ///
773    /// # Safety
774    ///
775    /// Calling this method is undefined behaviour if the underlying array
776    /// is aliased mutably by other instances of `PyArray`
777    /// or concurrently modified by Python or other native code.
778    ///
779    /// Consider using safe alternatives like [`PyReadonlyArray::get`].
780    ///
781    /// # Example
782    ///
783    /// ```
784    /// use numpy::{PyArray, PyArrayMethods};
785    /// use pyo3::Python;
786    ///
787    /// Python::with_gil(|py| {
788    ///     let pyarray = PyArray::arange(py, 0, 16, 1).reshape([2, 2, 4]).unwrap();
789    ///
790    ///     assert_eq!(unsafe { *pyarray.get([1, 0, 3]).unwrap() }, 11);
791    /// });
792    /// ```
793    unsafe fn get(&self, index: impl NpyIndex<Dim = D>) -> Option<&T>
794    where
795        T: Element,
796        D: Dimension;
797
798    /// Same as [`get`][Self::get], but returns `Option<&mut T>`.
799    ///
800    /// # Safety
801    ///
802    /// Calling this method is undefined behaviour if the underlying array
803    /// is aliased immutably or mutably by other instances of [`PyArray`]
804    /// or concurrently modified by Python or other native code.
805    ///
806    /// Consider using safe alternatives like [`PyReadwriteArray::get_mut`].
807    ///
808    /// # Example
809    ///
810    /// ```
811    /// use numpy::{PyArray, PyArrayMethods};
812    /// use pyo3::Python;
813    ///
814    /// Python::with_gil(|py| {
815    ///     let pyarray = PyArray::arange(py, 0, 16, 1).reshape([2, 2, 4]).unwrap();
816    ///
817    ///     unsafe {
818    ///         *pyarray.get_mut([1, 0, 3]).unwrap() = 42;
819    ///     }
820    ///
821    ///     assert_eq!(unsafe { *pyarray.get([1, 0, 3]).unwrap() }, 42);
822    /// });
823    /// ```
824    unsafe fn get_mut(&self, index: impl NpyIndex<Dim = D>) -> Option<&mut T>
825    where
826        T: Element,
827        D: Dimension;
828
829    /// Get an immutable reference of the specified element,
830    /// without checking the given index.
831    ///
832    /// See [`NpyIndex`] for what types can be used as the index.
833    ///
834    /// # Safety
835    ///
836    /// Passing an invalid index is undefined behavior.
837    /// The element must also have been initialized and
838    /// all other references to it is must also be shared.
839    ///
840    /// See [`PyReadonlyArray::get`] for a safe alternative.
841    ///
842    /// # Example
843    ///
844    /// ```
845    /// use numpy::{PyArray, PyArrayMethods};
846    /// use pyo3::Python;
847    ///
848    /// Python::with_gil(|py| {
849    ///     let pyarray = PyArray::arange(py, 0, 16, 1).reshape([2, 2, 4]).unwrap();
850    ///
851    ///     assert_eq!(unsafe { *pyarray.uget([1, 0, 3]) }, 11);
852    /// });
853    /// ```
854    #[inline(always)]
855    unsafe fn uget<Idx>(&self, index: Idx) -> &T
856    where
857        T: Element,
858        D: Dimension,
859        Idx: NpyIndex<Dim = D>,
860    {
861        &*self.uget_raw(index)
862    }
863
864    /// Same as [`uget`](Self::uget), but returns `&mut T`.
865    ///
866    /// # Safety
867    ///
868    /// Passing an invalid index is undefined behavior.
869    /// The element must also have been initialized and
870    /// other references to it must not exist.
871    ///
872    /// See [`PyReadwriteArray::get_mut`] for a safe alternative.
873    #[inline(always)]
874    #[allow(clippy::mut_from_ref)]
875    unsafe fn uget_mut<Idx>(&self, index: Idx) -> &mut T
876    where
877        T: Element,
878        D: Dimension,
879        Idx: NpyIndex<Dim = D>,
880    {
881        &mut *self.uget_raw(index)
882    }
883
884    /// Same as [`uget`][Self::uget], but returns `*mut T`.
885    ///
886    /// # Safety
887    ///
888    /// Passing an invalid index is undefined behavior.
889    #[inline(always)]
890    unsafe fn uget_raw<Idx>(&self, index: Idx) -> *mut T
891    where
892        T: Element,
893        D: Dimension,
894        Idx: NpyIndex<Dim = D>,
895    {
896        let offset = index.get_unchecked::<T>(self.strides());
897        self.data().offset(offset) as *mut _
898    }
899
900    /// Get a copy of the specified element in the array.
901    ///
902    /// See [`NpyIndex`] for what types can be used as the index.
903    ///
904    /// # Example
905    /// ```
906    /// use numpy::{PyArray, PyArrayMethods};
907    /// use pyo3::Python;
908    ///
909    /// Python::with_gil(|py| {
910    ///     let pyarray = PyArray::arange(py, 0, 16, 1).reshape([2, 2, 4]).unwrap();
911    ///
912    ///     assert_eq!(pyarray.get_owned([1, 0, 3]), Some(11));
913    /// });
914    /// ```
915    fn get_owned<Idx>(&self, index: Idx) -> Option<T>
916    where
917        T: Element,
918        D: Dimension,
919        Idx: NpyIndex<Dim = D>;
920
921    /// Turn an array with fixed dimensionality into one with dynamic dimensionality.
922    fn to_dyn(&self) -> &Bound<'py, PyArray<T, IxDyn>>
923    where
924        T: Element,
925        D: Dimension;
926
927    /// Returns a copy of the internal data of the array as a [`Vec`].
928    ///
929    /// Fails if the internal array is not contiguous. See also [`as_slice`][Self::as_slice].
930    ///
931    /// # Example
932    ///
933    /// ```
934    /// use numpy::{PyArray2, PyArrayMethods};
935    /// use pyo3::{Python, types::PyAnyMethods, ffi::c_str};
936    ///
937    /// # fn main() -> pyo3::PyResult<()> {
938    /// Python::with_gil(|py| {
939    ///     let pyarray= py
940    ///         .eval(c_str!("__import__('numpy').array([[0, 1], [2, 3]], dtype='int64')"), None, None)?
941    ///         .downcast_into::<PyArray2<i64>>()?;
942    ///
943    ///     assert_eq!(pyarray.to_vec()?, vec![0, 1, 2, 3]);
944    /// #   Ok(())
945    /// })
946    /// # }
947    /// ```
948    fn to_vec(&self) -> Result<Vec<T>, NotContiguousError>
949    where
950        T: Element,
951        D: Dimension;
952
953    /// Get an immutable borrow of the NumPy array
954    fn try_readonly(&self) -> Result<PyReadonlyArray<'py, T, D>, BorrowError>
955    where
956        T: Element,
957        D: Dimension;
958
959    /// Get an immutable borrow of the NumPy array
960    ///
961    /// # Panics
962    ///
963    /// Panics if the allocation backing the array is currently mutably borrowed.
964    ///
965    /// For a non-panicking variant, use [`try_readonly`][Self::try_readonly].
966    fn readonly(&self) -> PyReadonlyArray<'py, T, D>
967    where
968        T: Element,
969        D: Dimension,
970    {
971        self.try_readonly().unwrap()
972    }
973
974    /// Get a mutable borrow of the NumPy array
975    fn try_readwrite(&self) -> Result<PyReadwriteArray<'py, T, D>, BorrowError>
976    where
977        T: Element,
978        D: Dimension;
979
980    /// Get a mutable borrow of the NumPy array
981    ///
982    /// # Panics
983    ///
984    /// Panics if the allocation backing the array is currently borrowed or
985    /// if the array is [flagged as][flags] not writeable.
986    ///
987    /// For a non-panicking variant, use [`try_readwrite`][Self::try_readwrite].
988    ///
989    /// [flags]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html
990    fn readwrite(&self) -> PyReadwriteArray<'py, T, D>
991    where
992        T: Element,
993        D: Dimension,
994    {
995        self.try_readwrite().unwrap()
996    }
997
998    /// Returns an [`ArrayView`] of the internal array.
999    ///
1000    /// See also [`PyReadonlyArray::as_array`].
1001    ///
1002    /// # Safety
1003    ///
1004    /// Calling this method invalidates all exclusive references to the internal data, e.g. `&mut [T]` or `ArrayViewMut`.
1005    unsafe fn as_array(&self) -> ArrayView<'_, T, D>
1006    where
1007        T: Element,
1008        D: Dimension;
1009
1010    /// Returns an [`ArrayViewMut`] of the internal array.
1011    ///
1012    /// See also [`PyReadwriteArray::as_array_mut`].
1013    ///
1014    /// # Safety
1015    ///
1016    /// Calling this method invalidates all other references to the internal data, e.g. `ArrayView` or `ArrayViewMut`.
1017    unsafe fn as_array_mut(&self) -> ArrayViewMut<'_, T, D>
1018    where
1019        T: Element,
1020        D: Dimension;
1021
1022    /// Returns the internal array as [`RawArrayView`] enabling element access via raw pointers
1023    fn as_raw_array(&self) -> RawArrayView<T, D>
1024    where
1025        T: Element,
1026        D: Dimension;
1027
1028    /// Returns the internal array as [`RawArrayViewMut`] enabling element access via raw pointers
1029    fn as_raw_array_mut(&self) -> RawArrayViewMut<T, D>
1030    where
1031        T: Element,
1032        D: Dimension;
1033
1034    /// Get a copy of the array as an [`ndarray::Array`].
1035    ///
1036    /// # Example
1037    ///
1038    /// ```
1039    /// use numpy::{PyArray, PyArrayMethods};
1040    /// use ndarray::array;
1041    /// use pyo3::Python;
1042    ///
1043    /// Python::with_gil(|py| {
1044    ///     let pyarray = PyArray::arange(py, 0, 4, 1).reshape([2, 2]).unwrap();
1045    ///
1046    ///     assert_eq!(
1047    ///         pyarray.to_owned_array(),
1048    ///         array![[0, 1], [2, 3]]
1049    ///     )
1050    /// });
1051    /// ```
1052    fn to_owned_array(&self) -> Array<T, D>
1053    where
1054        T: Element,
1055        D: Dimension;
1056
1057    /// Copies `self` into `other`, performing a data type conversion if necessary.
1058    ///
1059    /// See also [`PyArray_CopyInto`][PyArray_CopyInto].
1060    ///
1061    /// # Example
1062    ///
1063    /// ```
1064    /// use numpy::{PyArray, PyArrayMethods};
1065    /// use pyo3::Python;
1066    ///
1067    /// Python::with_gil(|py| {
1068    ///     let pyarray_f = PyArray::arange(py, 2.0, 5.0, 1.0);
1069    ///     let pyarray_i = unsafe { PyArray::<i64, _>::new(py, [3], false) };
1070    ///
1071    ///     assert!(pyarray_f.copy_to(&pyarray_i).is_ok());
1072    ///
1073    ///     assert_eq!(pyarray_i.readonly().as_slice().unwrap(), &[2, 3, 4]);
1074    /// });
1075    /// ```
1076    ///
1077    /// [PyArray_CopyInto]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_CopyInto
1078    fn copy_to<U: Element>(&self, other: &Bound<'py, PyArray<U, D>>) -> PyResult<()>
1079    where
1080        T: Element;
1081
1082    /// Cast the `PyArray<T>` to `PyArray<U>`, by allocating a new array.
1083    ///
1084    /// See also [`PyArray_CastToType`][PyArray_CastToType].
1085    ///
1086    /// # Example
1087    ///
1088    /// ```
1089    /// use numpy::{PyArray, PyArrayMethods};
1090    /// use pyo3::Python;
1091    ///
1092    /// Python::with_gil(|py| {
1093    ///     let pyarray_f = PyArray::arange(py, 2.0, 5.0, 1.0);
1094    ///
1095    ///     let pyarray_i = pyarray_f.cast::<i32>(false).unwrap();
1096    ///
1097    ///     assert_eq!(pyarray_i.readonly().as_slice().unwrap(), &[2, 3, 4]);
1098    /// });
1099    /// ```
1100    ///
1101    /// [PyArray_CastToType]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_CastToType
1102    fn cast<U: Element>(&self, is_fortran: bool) -> PyResult<Bound<'py, PyArray<U, D>>>
1103    where
1104        T: Element;
1105
1106    /// A view of `self` with a different order of axes determined by `axes`.
1107    ///
1108    /// If `axes` is `None`, the order of axes is reversed which corresponds to the standard matrix transpose.
1109    ///
1110    /// See also [`numpy.transpose`][numpy-transpose] and [`PyArray_Transpose`][PyArray_Transpose].
1111    ///
1112    /// # Example
1113    ///
1114    /// ```
1115    /// use numpy::prelude::*;
1116    /// use numpy::PyArray;
1117    /// use pyo3::Python;
1118    /// use ndarray::array;
1119    ///
1120    /// Python::with_gil(|py| {
1121    ///     let array = array![[0, 1, 2], [3, 4, 5]].into_pyarray(py);
1122    ///
1123    ///     let array = array.permute(Some([1, 0])).unwrap();
1124    ///
1125    ///     assert_eq!(array.readonly().as_array(), array![[0, 3], [1, 4], [2, 5]]);
1126    /// });
1127    /// ```
1128    ///
1129    /// [numpy-transpose]: https://numpy.org/doc/stable/reference/generated/numpy.transpose.html
1130    /// [PyArray_Transpose]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_Transpose
1131    fn permute<ID: IntoDimension>(&self, axes: Option<ID>) -> PyResult<Bound<'py, PyArray<T, D>>>
1132    where
1133        T: Element;
1134
1135    /// Special case of [`permute`][Self::permute] which reverses the order the axes.
1136    fn transpose(&self) -> PyResult<Bound<'py, PyArray<T, D>>>
1137    where
1138        T: Element,
1139    {
1140        self.permute::<()>(None)
1141    }
1142
1143    /// Construct a new array which has same values as `self`,
1144    /// but has different dimensions specified by `shape`
1145    /// and a possibly different memory order specified by `order`.
1146    ///
1147    /// See also [`numpy.reshape`][numpy-reshape] and [`PyArray_Newshape`][PyArray_Newshape].
1148    ///
1149    /// # Example
1150    ///
1151    /// ```
1152    /// use numpy::prelude::*;
1153    /// use numpy::{npyffi::NPY_ORDER, PyArray};
1154    /// use pyo3::Python;
1155    /// use ndarray::array;
1156    ///
1157    /// Python::with_gil(|py| {
1158    ///     let array =
1159    ///         PyArray::from_iter(py, 0..9).reshape_with_order([3, 3], NPY_ORDER::NPY_FORTRANORDER).unwrap();
1160    ///
1161    ///     assert_eq!(array.readonly().as_array(), array![[0, 3, 6], [1, 4, 7], [2, 5, 8]]);
1162    ///     assert!(array.is_fortran_contiguous());
1163    ///
1164    ///     assert!(array.reshape([5]).is_err());
1165    /// });
1166    /// ```
1167    ///
1168    /// [numpy-reshape]: https://numpy.org/doc/stable/reference/generated/numpy.reshape.html
1169    /// [PyArray_Newshape]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_Newshape
1170    fn reshape_with_order<ID: IntoDimension>(
1171        &self,
1172        shape: ID,
1173        order: NPY_ORDER,
1174    ) -> PyResult<Bound<'py, PyArray<T, ID::Dim>>>
1175    where
1176        T: Element;
1177
1178    /// Special case of [`reshape_with_order`][Self::reshape_with_order] which keeps the memory order the same.
1179    #[inline(always)]
1180    fn reshape<ID: IntoDimension>(&self, shape: ID) -> PyResult<Bound<'py, PyArray<T, ID::Dim>>>
1181    where
1182        T: Element,
1183    {
1184        self.reshape_with_order(shape, NPY_ORDER::NPY_ANYORDER)
1185    }
1186
1187    /// Extends or truncates the dimensions of an array.
1188    ///
1189    /// This method works only on [contiguous][PyUntypedArrayMethods::is_contiguous] arrays.
1190    /// Missing elements will be initialized as if calling [`zeros`][PyArray::zeros].
1191    ///
1192    /// See also [`ndarray.resize`][ndarray-resize] and [`PyArray_Resize`][PyArray_Resize].
1193    ///
1194    /// # Safety
1195    ///
1196    /// There should be no outstanding references (shared or exclusive) into the array
1197    /// as this method might re-allocate it and thereby invalidate all pointers into it.
1198    ///
1199    /// # Example
1200    ///
1201    /// ```
1202    /// use numpy::prelude::*;
1203    /// use numpy::PyArray;
1204    /// use pyo3::Python;
1205    ///
1206    /// Python::with_gil(|py| {
1207    ///     let pyarray = PyArray::<f64, _>::zeros(py, (10, 10), false);
1208    ///     assert_eq!(pyarray.shape(), [10, 10]);
1209    ///
1210    ///     unsafe {
1211    ///         pyarray.resize((100, 100)).unwrap();
1212    ///     }
1213    ///     assert_eq!(pyarray.shape(), [100, 100]);
1214    /// });
1215    /// ```
1216    ///
1217    /// [ndarray-resize]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.resize.html
1218    /// [PyArray_Resize]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_Resize
1219    unsafe fn resize<ID: IntoDimension>(&self, newshape: ID) -> PyResult<()>
1220    where
1221        T: Element;
1222
1223    /// Try to convert this array into a [`nalgebra::MatrixView`] using the given shape and strides.
1224    ///
1225    /// # Safety
1226    ///
1227    /// Calling this method invalidates all exclusive references to the internal data, e.g. `ArrayViewMut` or `MatrixSliceMut`.
1228    #[doc(alias = "nalgebra")]
1229    #[cfg(feature = "nalgebra")]
1230    unsafe fn try_as_matrix<R, C, RStride, CStride>(
1231        &self,
1232    ) -> Option<nalgebra::MatrixView<'_, T, R, C, RStride, CStride>>
1233    where
1234        T: nalgebra::Scalar + Element,
1235        D: Dimension,
1236        R: nalgebra::Dim,
1237        C: nalgebra::Dim,
1238        RStride: nalgebra::Dim,
1239        CStride: nalgebra::Dim;
1240
1241    /// Try to convert this array into a [`nalgebra::MatrixViewMut`] using the given shape and strides.
1242    ///
1243    /// # Safety
1244    ///
1245    /// Calling this method invalidates all other references to the internal data, e.g. `ArrayView`, `MatrixSlice`, `ArrayViewMut` or `MatrixSliceMut`.
1246    #[doc(alias = "nalgebra")]
1247    #[cfg(feature = "nalgebra")]
1248    unsafe fn try_as_matrix_mut<R, C, RStride, CStride>(
1249        &self,
1250    ) -> Option<nalgebra::MatrixViewMut<'_, T, R, C, RStride, CStride>>
1251    where
1252        T: nalgebra::Scalar + Element,
1253        D: Dimension,
1254        R: nalgebra::Dim,
1255        C: nalgebra::Dim,
1256        RStride: nalgebra::Dim,
1257        CStride: nalgebra::Dim;
1258}
1259
1260/// Implementation of functionality for [`PyArray0<T>`].
1261#[doc(alias = "PyArray", alias = "PyArray0")]
1262pub trait PyArray0Methods<'py, T>: PyArrayMethods<'py, T, Ix0> {
1263    /// Get the single element of a zero-dimensional array.
1264    ///
1265    /// See [`inner`][crate::inner] for an example.
1266    fn item(&self) -> T
1267    where
1268        T: Element + Copy,
1269    {
1270        unsafe { *self.data() }
1271    }
1272}
1273
1274#[inline(always)]
1275fn get_raw<T, D, Idx>(slf: &Bound<'_, PyArray<T, D>>, index: Idx) -> Option<*mut T>
1276where
1277    T: Element,
1278    D: Dimension,
1279    Idx: NpyIndex<Dim = D>,
1280{
1281    let offset = index.get_checked::<T>(slf.shape(), slf.strides())?;
1282    Some(unsafe { slf.data().offset(offset) })
1283}
1284
1285fn as_view<T, D, S, F>(slf: &Bound<'_, PyArray<T, D>>, from_shape_ptr: F) -> ArrayBase<S, D>
1286where
1287    T: Element,
1288    D: Dimension,
1289    S: RawData,
1290    F: FnOnce(StrideShape<D>, *mut T) -> ArrayBase<S, D>,
1291{
1292    fn inner<D: Dimension>(
1293        shape: &[usize],
1294        strides: &[isize],
1295        itemsize: usize,
1296        mut data_ptr: *mut u8,
1297    ) -> (StrideShape<D>, u32, *mut u8) {
1298        let shape = D::from_dimension(&Dim(shape)).expect(DIMENSIONALITY_MISMATCH_ERR);
1299
1300        assert!(strides.len() <= 32, "{}", MAX_DIMENSIONALITY_ERR);
1301
1302        let mut new_strides = D::zeros(strides.len());
1303        let mut inverted_axes = 0_u32;
1304
1305        for i in 0..strides.len() {
1306            // FIXME(kngwyu): Replace this hacky negative strides support with
1307            // a proper constructor, when it's implemented.
1308            // See https://github.com/rust-ndarray/ndarray/issues/842 for more.
1309            if strides[i] >= 0 {
1310                new_strides[i] = strides[i] as usize / itemsize;
1311            } else {
1312                // Move the pointer to the start position.
1313                data_ptr = unsafe { data_ptr.offset(strides[i] * (shape[i] as isize - 1)) };
1314
1315                new_strides[i] = (-strides[i]) as usize / itemsize;
1316                inverted_axes |= 1 << i;
1317            }
1318        }
1319
1320        (shape.strides(new_strides), inverted_axes, data_ptr)
1321    }
1322
1323    let (shape, mut inverted_axes, data_ptr) = inner(
1324        slf.shape(),
1325        slf.strides(),
1326        mem::size_of::<T>(),
1327        slf.data() as _,
1328    );
1329
1330    let mut array = from_shape_ptr(shape, data_ptr as _);
1331
1332    while inverted_axes != 0 {
1333        let axis = inverted_axes.trailing_zeros() as usize;
1334        inverted_axes &= !(1 << axis);
1335
1336        array.invert_axis(Axis(axis));
1337    }
1338
1339    array
1340}
1341
1342#[cfg(feature = "nalgebra")]
1343fn try_as_matrix_shape_strides<N, D, R, C, RStride, CStride>(
1344    slf: &Bound<'_, PyArray<N, D>>,
1345) -> Option<((R, C), (RStride, CStride))>
1346where
1347    N: nalgebra::Scalar + Element,
1348    D: Dimension,
1349    R: nalgebra::Dim,
1350    C: nalgebra::Dim,
1351    RStride: nalgebra::Dim,
1352    CStride: nalgebra::Dim,
1353{
1354    let ndim = slf.ndim();
1355    let shape = slf.shape();
1356    let strides = slf.strides();
1357
1358    if ndim != 1 && ndim != 2 {
1359        return None;
1360    }
1361
1362    if strides.iter().any(|strides| *strides < 0) {
1363        return None;
1364    }
1365
1366    let rows = shape[0];
1367    let cols = *shape.get(1).unwrap_or(&1);
1368
1369    if R::try_to_usize().map(|expected| rows == expected) == Some(false) {
1370        return None;
1371    }
1372
1373    if C::try_to_usize().map(|expected| cols == expected) == Some(false) {
1374        return None;
1375    }
1376
1377    let row_stride = strides[0] as usize / mem::size_of::<N>();
1378    let col_stride = strides
1379        .get(1)
1380        .map_or(rows, |stride| *stride as usize / mem::size_of::<N>());
1381
1382    if RStride::try_to_usize().map(|expected| row_stride == expected) == Some(false) {
1383        return None;
1384    }
1385
1386    if CStride::try_to_usize().map(|expected| col_stride == expected) == Some(false) {
1387        return None;
1388    }
1389
1390    let shape = (R::from_usize(rows), C::from_usize(cols));
1391
1392    let strides = (
1393        RStride::from_usize(row_stride),
1394        CStride::from_usize(col_stride),
1395    );
1396
1397    Some((shape, strides))
1398}
1399
1400impl<'py, T, D> PyArrayMethods<'py, T, D> for Bound<'py, PyArray<T, D>> {
1401    #[inline(always)]
1402    fn as_untyped(&self) -> &Bound<'py, PyUntypedArray> {
1403        unsafe { self.downcast_unchecked() }
1404    }
1405
1406    #[inline(always)]
1407    fn data(&self) -> *mut T {
1408        unsafe { (*self.as_array_ptr()).data.cast() }
1409    }
1410
1411    #[inline(always)]
1412    unsafe fn get(&self, index: impl NpyIndex<Dim = D>) -> Option<&T>
1413    where
1414        T: Element,
1415        D: Dimension,
1416    {
1417        let ptr = get_raw(self, index)?;
1418        Some(&*ptr)
1419    }
1420
1421    #[inline(always)]
1422    unsafe fn get_mut(&self, index: impl NpyIndex<Dim = D>) -> Option<&mut T>
1423    where
1424        T: Element,
1425        D: Dimension,
1426    {
1427        let ptr = get_raw(self, index)?;
1428        Some(&mut *ptr)
1429    }
1430
1431    fn get_owned<Idx>(&self, index: Idx) -> Option<T>
1432    where
1433        T: Element,
1434        D: Dimension,
1435        Idx: NpyIndex<Dim = D>,
1436    {
1437        let element = unsafe { self.get(index) };
1438        element.map(|elem| elem.clone_ref(self.py()))
1439    }
1440
1441    fn to_dyn(&self) -> &Bound<'py, PyArray<T, IxDyn>> {
1442        unsafe { self.downcast_unchecked() }
1443    }
1444
1445    fn to_vec(&self) -> Result<Vec<T>, NotContiguousError>
1446    where
1447        T: Element,
1448        D: Dimension,
1449    {
1450        let slice = unsafe { self.as_slice() };
1451        slice.map(|slc| T::vec_from_slice(self.py(), slc))
1452    }
1453
1454    fn try_readonly(&self) -> Result<PyReadonlyArray<'py, T, D>, BorrowError>
1455    where
1456        T: Element,
1457        D: Dimension,
1458    {
1459        PyReadonlyArray::try_new(self.clone())
1460    }
1461
1462    fn try_readwrite(&self) -> Result<PyReadwriteArray<'py, T, D>, BorrowError>
1463    where
1464        T: Element,
1465        D: Dimension,
1466    {
1467        PyReadwriteArray::try_new(self.clone())
1468    }
1469
1470    unsafe fn as_array(&self) -> ArrayView<'_, T, D>
1471    where
1472        T: Element,
1473        D: Dimension,
1474    {
1475        as_view(self, |shape, ptr| ArrayView::from_shape_ptr(shape, ptr))
1476    }
1477
1478    unsafe fn as_array_mut(&self) -> ArrayViewMut<'_, T, D>
1479    where
1480        T: Element,
1481        D: Dimension,
1482    {
1483        as_view(self, |shape, ptr| ArrayViewMut::from_shape_ptr(shape, ptr))
1484    }
1485
1486    fn as_raw_array(&self) -> RawArrayView<T, D>
1487    where
1488        T: Element,
1489        D: Dimension,
1490    {
1491        as_view(self, |shape, ptr| unsafe {
1492            RawArrayView::from_shape_ptr(shape, ptr)
1493        })
1494    }
1495
1496    fn as_raw_array_mut(&self) -> RawArrayViewMut<T, D>
1497    where
1498        T: Element,
1499        D: Dimension,
1500    {
1501        as_view(self, |shape, ptr| unsafe {
1502            RawArrayViewMut::from_shape_ptr(shape, ptr)
1503        })
1504    }
1505
1506    fn to_owned_array(&self) -> Array<T, D>
1507    where
1508        T: Element,
1509        D: Dimension,
1510    {
1511        let view = unsafe { self.as_array() };
1512        T::array_from_view(self.py(), view)
1513    }
1514
1515    fn copy_to<U: Element>(&self, other: &Bound<'py, PyArray<U, D>>) -> PyResult<()>
1516    where
1517        T: Element,
1518    {
1519        let self_ptr = self.as_array_ptr();
1520        let other_ptr = other.as_array_ptr();
1521        let result = unsafe { PY_ARRAY_API.PyArray_CopyInto(self.py(), other_ptr, self_ptr) };
1522        if result != -1 {
1523            Ok(())
1524        } else {
1525            Err(PyErr::fetch(self.py()))
1526        }
1527    }
1528
1529    fn cast<U: Element>(&self, is_fortran: bool) -> PyResult<Bound<'py, PyArray<U, D>>>
1530    where
1531        T: Element,
1532    {
1533        let ptr = unsafe {
1534            PY_ARRAY_API.PyArray_CastToType(
1535                self.py(),
1536                self.as_array_ptr(),
1537                U::get_dtype(self.py()).into_dtype_ptr(),
1538                if is_fortran { -1 } else { 0 },
1539            )
1540        };
1541        unsafe {
1542            Bound::from_owned_ptr_or_err(self.py(), ptr).map(|ob| ob.downcast_into_unchecked())
1543        }
1544    }
1545
1546    fn permute<ID: IntoDimension>(&self, axes: Option<ID>) -> PyResult<Bound<'py, PyArray<T, D>>> {
1547        let mut axes = axes.map(|axes| axes.into_dimension());
1548        let mut axes = axes.as_mut().map(|axes| axes.to_npy_dims());
1549        let axes = axes
1550            .as_mut()
1551            .map_or_else(ptr::null_mut, |axes| axes as *mut npyffi::PyArray_Dims);
1552
1553        let py = self.py();
1554        let ptr = unsafe { PY_ARRAY_API.PyArray_Transpose(py, self.as_array_ptr(), axes) };
1555        unsafe { Bound::from_owned_ptr_or_err(py, ptr).map(|ob| ob.downcast_into_unchecked()) }
1556    }
1557
1558    fn reshape_with_order<ID: IntoDimension>(
1559        &self,
1560        shape: ID,
1561        order: NPY_ORDER,
1562    ) -> PyResult<Bound<'py, PyArray<T, ID::Dim>>>
1563    where
1564        T: Element,
1565    {
1566        let mut shape = shape.into_dimension();
1567        let mut shape = shape.to_npy_dims();
1568
1569        let py = self.py();
1570        let ptr = unsafe {
1571            PY_ARRAY_API.PyArray_Newshape(
1572                py,
1573                self.as_array_ptr(),
1574                &mut shape as *mut npyffi::PyArray_Dims,
1575                order,
1576            )
1577        };
1578        unsafe { Bound::from_owned_ptr_or_err(py, ptr).map(|ob| ob.downcast_into_unchecked()) }
1579    }
1580
1581    unsafe fn resize<ID: IntoDimension>(&self, newshape: ID) -> PyResult<()>
1582    where
1583        T: Element,
1584    {
1585        let mut newshape = newshape.into_dimension();
1586        let mut newshape = newshape.to_npy_dims();
1587
1588        let py = self.py();
1589        let res = PY_ARRAY_API.PyArray_Resize(
1590            py,
1591            self.as_array_ptr(),
1592            &mut newshape as *mut npyffi::PyArray_Dims,
1593            1,
1594            NPY_ORDER::NPY_ANYORDER,
1595        );
1596
1597        if !res.is_null() {
1598            Ok(())
1599        } else {
1600            Err(PyErr::fetch(py))
1601        }
1602    }
1603
1604    #[cfg(feature = "nalgebra")]
1605    unsafe fn try_as_matrix<R, C, RStride, CStride>(
1606        &self,
1607    ) -> Option<nalgebra::MatrixView<'_, T, R, C, RStride, CStride>>
1608    where
1609        T: nalgebra::Scalar + Element,
1610        D: Dimension,
1611        R: nalgebra::Dim,
1612        C: nalgebra::Dim,
1613        RStride: nalgebra::Dim,
1614        CStride: nalgebra::Dim,
1615    {
1616        let (shape, strides) = try_as_matrix_shape_strides(self)?;
1617
1618        let storage = nalgebra::ViewStorage::from_raw_parts(self.data(), shape, strides);
1619
1620        Some(nalgebra::Matrix::from_data(storage))
1621    }
1622
1623    #[cfg(feature = "nalgebra")]
1624    unsafe fn try_as_matrix_mut<R, C, RStride, CStride>(
1625        &self,
1626    ) -> Option<nalgebra::MatrixViewMut<'_, T, R, C, RStride, CStride>>
1627    where
1628        T: nalgebra::Scalar + Element,
1629        D: Dimension,
1630        R: nalgebra::Dim,
1631        C: nalgebra::Dim,
1632        RStride: nalgebra::Dim,
1633        CStride: nalgebra::Dim,
1634    {
1635        let (shape, strides) = try_as_matrix_shape_strides(self)?;
1636
1637        let storage = nalgebra::ViewStorageMut::from_raw_parts(self.data(), shape, strides);
1638
1639        Some(nalgebra::Matrix::from_data(storage))
1640    }
1641}
1642
1643impl<'py, T> PyArray0Methods<'py, T> for Bound<'py, PyArray0<T>> {}
1644
1645#[cfg(test)]
1646mod tests {
1647    use super::*;
1648
1649    use ndarray::array;
1650    use pyo3::{py_run, types::PyList};
1651
1652    #[test]
1653    fn test_dyn_to_owned_array() {
1654        Python::with_gil(|py| {
1655            let array = PyArray::from_vec2(py, &[vec![1, 2], vec![3, 4]])
1656                .unwrap()
1657                .to_dyn()
1658                .to_owned_array();
1659
1660            assert_eq!(array, array![[1, 2], [3, 4]].into_dyn());
1661        });
1662    }
1663
1664    #[test]
1665    fn test_hasobject_flag() {
1666        Python::with_gil(|py| {
1667            let array: Bound<'_, PyArray<PyObject, _>> =
1668                PyArray1::from_slice(py, &[PyList::empty(py).into()]);
1669
1670            py_run!(py, array, "assert array.dtype.hasobject");
1671        });
1672    }
1673}